Changes
On October 1, 2024 at 3:33:15 PM UTC, admin:
-
Updated description of VISE-KG from
VISE: Validated and Invalidated Symbolic Explanations for Knowledge Graph Integrity This collection includes all the data necessary to reproduce the results from the experimental evaluation of VISE at EXPLIMED @ ECAI'24. The data is an anonymized synthetic lung cancer benchmark that comprises clinical data extracted from heterogeneous sources such as publications, clinical trials, and clinical records representing patients diagnosed with lung cancer. We evaluate the VISE approach on three anonymized Lung Cancer KGs: LC-𝐾𝐺1, LC-𝐾𝐺2,and LC-𝐾𝐺3 The collection comprises nine data sets of three different sizes: - LC Knowledge Graph 1 (LC-KG1) models 29 lung cancer patients - LC Knowledge Graph 2 (LC-KG2) models 203 lung cancer patients - LC Knowledge Graph 3 (LC-KG3) models 319 lung cancer patients Three distinct KGs of different sizes are available, each with its own characteristics. - "Original KG": The original KG comprises of anonymized lung cancer patients with different medical characteristics. - "Enriched KG": Utilizes an inductive learnng technique of KG completion through self-supervised symbolic learning over the original KG. - "Transformed KG": Denotes a transformation of the KG depending on SHACL shapes evaluated across the enriched KGs. This procedure is used to determine the validity of the data. VISE is also evaluated with KGs comprising 1242 lung cancer patients (LungCancer-OriginalKG, LungCancer-EnrichedKG, and LungCancer-TransformedKG). Our experimental results demonstrate the effectiveness of this hybrid strategy, which combines the strengths of symbolic, numerical, and constraint validation paradigms. VISE implementation is publicly accessible on GitHub (https://github.com/SDM-TIB/VISE).
toVISE: Validated and Invalidated Symbolic Explanations for Knowledge Graph Integrity This collection includes all the data necessary to reproduce the results from the experimental evaluation of VISE at EXPLIMED @ ECAI'24. The data is an anonymized synthetic lung cancer benchmark that comprises clinical data extracted from heterogeneous sources such as publications, clinical trials, and clinical records representing patients diagnosed with lung cancer. We evaluate the VISE approach on three anonymized Lung Cancer KGs: LC-𝐾𝐺1, LC-𝐾𝐺2,and LC-𝐾𝐺3 The collection comprises nine data sets of three different sizes: - LC Knowledge Graph 1 (LC-KG1) models 29 lung cancer patients - LC Knowledge Graph 2 (LC-KG2) models 203 lung cancer patients - LC Knowledge Graph 3 (LC-KG3) models 319 lung cancer patients Three distinct KGs of different sizes are available, each with its own characteristics. - "Original KG": The original KG comprises anonymized lung cancer patients with different medical characteristics. - "Enriched KG": Utilizes an inductive learning technique of KG completion through self-supervised symbolic learning over the original KG. - "Transformed KG": Denotes a transformation of the KG depending on SHACL shapes evaluated across the enriched KGs. This procedure is used to determine the validity of the data. VISE is also evaluated with KGs comprising 1242 lung cancer patients (LungCancer-OriginalKG, LungCancer-EnrichedKG, and LungCancer-TransformedKG). Our experimental results demonstrate the effectiveness of this hybrid strategy, which combines the strengths of symbolic, numerical, and constraint validation paradigms.
f | 1 | { | f | 1 | { |
2 | "access_rights": "Public", | 2 | "access_rights": "Public", | ||
3 | "accrualPeriodicity": "", | 3 | "accrualPeriodicity": "", | ||
4 | "author": "Disha Purohit", | 4 | "author": "Disha Purohit", | ||
5 | "author_email": "disha.purohit@tib.eu", | 5 | "author_email": "disha.purohit@tib.eu", | ||
6 | "citation": [], | 6 | "citation": [], | ||
7 | "conformsTo": "", | 7 | "conformsTo": "", | ||
8 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 8 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
9 | "defined_in": "", | 9 | "defined_in": "", | ||
10 | "doi": "10.57702/w3ghyku2", | 10 | "doi": "10.57702/w3ghyku2", | ||
11 | "doi_date_published": "2024-09-14", | 11 | "doi_date_published": "2024-09-14", | ||
12 | "doi_publisher": "TIB", | 12 | "doi_publisher": "TIB", | ||
13 | "doi_status": true, | 13 | "doi_status": true, | ||
14 | "domain": "https://ldm.kisski.de", | 14 | "domain": "https://ldm.kisski.de", | ||
15 | "end_date": "", | 15 | "end_date": "", | ||
16 | "extra_authors": [ | 16 | "extra_authors": [ | ||
17 | { | 17 | { | ||
18 | "extra_author": "Yashrajsinh Chudasama", | 18 | "extra_author": "Yashrajsinh Chudasama", | ||
19 | "orcid": "0000-0003-3422-366X" | 19 | "orcid": "0000-0003-3422-366X" | ||
20 | }, | 20 | }, | ||
21 | { | 21 | { | ||
22 | "extra_author": "Maria Torrente", | 22 | "extra_author": "Maria Torrente", | ||
23 | "orcid": "" | 23 | "orcid": "" | ||
24 | }, | 24 | }, | ||
25 | { | 25 | { | ||
26 | "extra_author": "Maria-Esther Vidal", | 26 | "extra_author": "Maria-Esther Vidal", | ||
27 | "orcid": "0000-0003-1160-8727" | 27 | "orcid": "0000-0003-1160-8727" | ||
28 | } | 28 | } | ||
29 | ], | 29 | ], | ||
30 | "extras": [ | 30 | "extras": [ | ||
31 | { | 31 | { | ||
32 | "__extras": { | 32 | "__extras": { | ||
33 | "id": "139e8ada-fd35-4f45-8601-adb4fcdf0291", | 33 | "id": "139e8ada-fd35-4f45-8601-adb4fcdf0291", | ||
34 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | 34 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | ||
35 | "state": "active" | 35 | "state": "active" | ||
36 | }, | 36 | }, | ||
37 | "key": "", | 37 | "key": "", | ||
38 | "value": "" | 38 | "value": "" | ||
39 | } | 39 | } | ||
40 | ], | 40 | ], | ||
41 | "groups": [ | 41 | "groups": [ | ||
42 | { | 42 | { | ||
43 | "description": "", | 43 | "description": "", | ||
44 | "display_name": "Medicine", | 44 | "display_name": "Medicine", | ||
45 | "id": "c25b6cbf-8d2e-43be-80e5-b1f5a72d9c99", | 45 | "id": "c25b6cbf-8d2e-43be-80e5-b1f5a72d9c99", | ||
46 | "image_display_url": "", | 46 | "image_display_url": "", | ||
47 | "name": "medicine", | 47 | "name": "medicine", | ||
48 | "title": "Medicine" | 48 | "title": "Medicine" | ||
49 | } | 49 | } | ||
50 | ], | 50 | ], | ||
51 | "id": "69043d59-72e2-4714-b914-dfced3f87b9a", | 51 | "id": "69043d59-72e2-4714-b914-dfced3f87b9a", | ||
52 | "isopen": true, | 52 | "isopen": true, | ||
53 | "landing_page": "", | 53 | "landing_page": "", | ||
54 | "language": "English", | 54 | "language": "English", | ||
55 | "license_id": "cc-by", | 55 | "license_id": "cc-by", | ||
56 | "license_title": "Creative Commons Attribution", | 56 | "license_title": "Creative Commons Attribution", | ||
57 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | 57 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | ||
58 | "link_orkg": "", | 58 | "link_orkg": "", | ||
59 | "maintainer": "Disha Purohit", | 59 | "maintainer": "Disha Purohit", | ||
60 | "maintainer_email": "disha.purohit@tib.eu", | 60 | "maintainer_email": "disha.purohit@tib.eu", | ||
61 | "metadata_created": "2024-09-14T12:01:01.489943", | 61 | "metadata_created": "2024-09-14T12:01:01.489943", | ||
n | 62 | "metadata_modified": "2024-10-01T15:30:55.493842", | n | 62 | "metadata_modified": "2024-10-01T15:33:04.119000", |
63 | "name": "vise-kg", | 63 | "name": "vise-kg", | ||
64 | "notes": "VISE: Validated and Invalidated Symbolic Explanations for | 64 | "notes": "VISE: Validated and Invalidated Symbolic Explanations for | ||
65 | Knowledge Graph Integrity\r\n\r\nThis collection includes all the data | 65 | Knowledge Graph Integrity\r\n\r\nThis collection includes all the data | ||
66 | necessary to reproduce the results from the experimental evaluation of | 66 | necessary to reproduce the results from the experimental evaluation of | ||
67 | VISE at EXPLIMED @ ECAI'24.\r\nThe data is an anonymized synthetic | 67 | VISE at EXPLIMED @ ECAI'24.\r\nThe data is an anonymized synthetic | ||
68 | lung cancer benchmark that comprises clinical data extracted from | 68 | lung cancer benchmark that comprises clinical data extracted from | ||
69 | heterogeneous sources such as publications, clinical trials, and | 69 | heterogeneous sources such as publications, clinical trials, and | ||
70 | clinical records representing patients diagnosed with lung cancer. We | 70 | clinical records representing patients diagnosed with lung cancer. We | ||
71 | evaluate the VISE approach on three anonymized Lung Cancer KGs: | 71 | evaluate the VISE approach on three anonymized Lung Cancer KGs: | ||
72 | LC-\ud835\udc3e\ud835\udc3a1, LC-\ud835\udc3e\ud835\udc3a2,and | 72 | LC-\ud835\udc3e\ud835\udc3a1, LC-\ud835\udc3e\ud835\udc3a2,and | ||
73 | LC-\ud835\udc3e\ud835\udc3a3\r\n\r\nThe collection comprises nine data | 73 | LC-\ud835\udc3e\ud835\udc3a3\r\n\r\nThe collection comprises nine data | ||
74 | sets of three different sizes:\r\n\r\n- LC Knowledge Graph 1 (LC-KG1) | 74 | sets of three different sizes:\r\n\r\n- LC Knowledge Graph 1 (LC-KG1) | ||
75 | models 29 lung cancer patients\r\n- LC Knowledge Graph 2 (LC-KG2) | 75 | models 29 lung cancer patients\r\n- LC Knowledge Graph 2 (LC-KG2) | ||
76 | models 203 lung cancer patients\r\n- LC Knowledge Graph 3 (LC-KG3) | 76 | models 203 lung cancer patients\r\n- LC Knowledge Graph 3 (LC-KG3) | ||
77 | models 319 lung cancer patients\r\n\r\nThree distinct KGs of different | 77 | models 319 lung cancer patients\r\n\r\nThree distinct KGs of different | ||
78 | sizes are available, each with its own characteristics. \r\n\r\n- | 78 | sizes are available, each with its own characteristics. \r\n\r\n- | ||
n | 79 | \"Original KG\": The original KG comprises of anonymized lung cancer | n | 79 | \"Original KG\": The original KG comprises anonymized lung cancer |
80 | patients with different medical characteristics. \r\n- \"Enriched | 80 | patients with different medical characteristics. \r\n- \"Enriched | ||
n | 81 | KG\": Utilizes an inductive learnng technique of KG completion through | n | 81 | KG\": Utilizes an inductive learning technique of KG completion |
82 | self-supervised symbolic learning over the original KG. \r\n- | 82 | through self-supervised symbolic learning over the original KG. \r\n- | ||
83 | \"Transformed KG\": Denotes a transformation of the KG depending on | 83 | \"Transformed KG\": Denotes a transformation of the KG depending on | ||
84 | SHACL shapes evaluated across the enriched KGs. This procedure is used | 84 | SHACL shapes evaluated across the enriched KGs. This procedure is used | ||
85 | to determine the validity of the data. \r\n\r\nVISE is also evaluated | 85 | to determine the validity of the data. \r\n\r\nVISE is also evaluated | ||
86 | with KGs comprising 1242 lung cancer patients (LungCancer-OriginalKG, | 86 | with KGs comprising 1242 lung cancer patients (LungCancer-OriginalKG, | ||
87 | LungCancer-EnrichedKG, and LungCancer-TransformedKG).\r\n\r\nOur | 87 | LungCancer-EnrichedKG, and LungCancer-TransformedKG).\r\n\r\nOur | ||
88 | experimental results demonstrate the effectiveness of this hybrid | 88 | experimental results demonstrate the effectiveness of this hybrid | ||
89 | strategy, which combines the strengths of symbolic, numerical, and | 89 | strategy, which combines the strengths of symbolic, numerical, and | ||
t | 90 | constraint validation\r\nparadigms. VISE implementation is publicly | t | 90 | constraint validation\r\nparadigms.", |
91 | accessible on GitHub (https://github.com/SDM-TIB/VISE).", | ||||
92 | "num_resources": 6, | 91 | "num_resources": 6, | ||
93 | "num_tags": 3, | 92 | "num_tags": 3, | ||
94 | "orcid": "0000-0002-1442-335X", | 93 | "orcid": "0000-0002-1442-335X", | ||
95 | "organization": { | 94 | "organization": { | ||
96 | "approval_status": "approved", | 95 | "approval_status": "approved", | ||
97 | "created": "2017-11-23T17:30:37.757128", | 96 | "created": "2017-11-23T17:30:37.757128", | ||
98 | "description": "The German National Library of Science and | 97 | "description": "The German National Library of Science and | ||
99 | Technology, abbreviated TIB, is the national library of the Federal | 98 | Technology, abbreviated TIB, is the national library of the Federal | ||
100 | Republic of Germany for all fields of engineering, technology, and the | 99 | Republic of Germany for all fields of engineering, technology, and the | ||
101 | natural sciences.", | 100 | natural sciences.", | ||
102 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 101 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
103 | "image_url": | 102 | "image_url": | ||
104 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | 103 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | ||
105 | "is_organization": true, | 104 | "is_organization": true, | ||
106 | "name": "tib", | 105 | "name": "tib", | ||
107 | "state": "active", | 106 | "state": "active", | ||
108 | "title": "TIB", | 107 | "title": "TIB", | ||
109 | "type": "organization" | 108 | "type": "organization" | ||
110 | }, | 109 | }, | ||
111 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 110 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
112 | "page": "", | 111 | "page": "", | ||
113 | "private": false, | 112 | "private": false, | ||
114 | "relationships_as_object": [], | 113 | "relationships_as_object": [], | ||
115 | "relationships_as_subject": [], | 114 | "relationships_as_subject": [], | ||
116 | "resources": [ | 115 | "resources": [ | ||
117 | { | 116 | { | ||
118 | "auto_update": "No", | 117 | "auto_update": "No", | ||
119 | "auto_update_last_update": "", | 118 | "auto_update_last_update": "", | ||
120 | "auto_update_url": "", | 119 | "auto_update_url": "", | ||
121 | "cache_last_updated": null, | 120 | "cache_last_updated": null, | ||
122 | "cache_url": null, | 121 | "cache_url": null, | ||
123 | "created": "2024-09-14T12:01:25.289289", | 122 | "created": "2024-09-14T12:01:25.289289", | ||
124 | "description": "Anonymized LungCancer-OriginalKG", | 123 | "description": "Anonymized LungCancer-OriginalKG", | ||
125 | "format": "NT", | 124 | "format": "NT", | ||
126 | "hash": "", | 125 | "hash": "", | ||
127 | "id": "0a16870f-8c11-414e-8e40-1ce2d7f8c0a8", | 126 | "id": "0a16870f-8c11-414e-8e40-1ce2d7f8c0a8", | ||
128 | "language": "English", | 127 | "language": "English", | ||
129 | "last_modified": "2024-09-14T12:01:25.271055", | 128 | "last_modified": "2024-09-14T12:01:25.271055", | ||
130 | "media": "", | 129 | "media": "", | ||
131 | "metadata_modified": "2024-09-16T09:55:35.830398", | 130 | "metadata_modified": "2024-09-16T09:55:35.830398", | ||
132 | "mimetype": null, | 131 | "mimetype": null, | ||
133 | "mimetype_inner": null, | 132 | "mimetype_inner": null, | ||
134 | "name": "LungCancer-OriginalKG", | 133 | "name": "LungCancer-OriginalKG", | ||
135 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | 134 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | ||
136 | "position": 0, | 135 | "position": 0, | ||
137 | "resource_type": null, | 136 | "resource_type": null, | ||
138 | "rights": "", | 137 | "rights": "", | ||
139 | "size": 2350495, | 138 | "size": 2350495, | ||
140 | "state": "active", | 139 | "state": "active", | ||
141 | "url": | 140 | "url": | ||
142 | 16870f-8c11-414e-8e40-1ce2d7f8c0a8/download/lungcancer-originalkg.nt", | 141 | 16870f-8c11-414e-8e40-1ce2d7f8c0a8/download/lungcancer-originalkg.nt", | ||
143 | "url_type": "upload" | 142 | "url_type": "upload" | ||
144 | }, | 143 | }, | ||
145 | { | 144 | { | ||
146 | "auto_update": "No", | 145 | "auto_update": "No", | ||
147 | "auto_update_last_update": "", | 146 | "auto_update_last_update": "", | ||
148 | "auto_update_url": "", | 147 | "auto_update_url": "", | ||
149 | "cache_last_updated": null, | 148 | "cache_last_updated": null, | ||
150 | "cache_url": null, | 149 | "cache_url": null, | ||
151 | "created": "2024-09-14T12:02:06.217600", | 150 | "created": "2024-09-14T12:02:06.217600", | ||
152 | "description": "Anonymized LungCancer-TransformedKG ", | 151 | "description": "Anonymized LungCancer-TransformedKG ", | ||
153 | "format": "", | 152 | "format": "", | ||
154 | "hash": "", | 153 | "hash": "", | ||
155 | "id": "9ff29cf3-a9d2-4900-8184-b2956b382ee9", | 154 | "id": "9ff29cf3-a9d2-4900-8184-b2956b382ee9", | ||
156 | "language": "", | 155 | "language": "", | ||
157 | "last_modified": "2024-09-14T12:02:06.200894", | 156 | "last_modified": "2024-09-14T12:02:06.200894", | ||
158 | "media": "", | 157 | "media": "", | ||
159 | "metadata_modified": "2024-09-16T09:56:30.466188", | 158 | "metadata_modified": "2024-09-16T09:56:30.466188", | ||
160 | "mimetype": null, | 159 | "mimetype": null, | ||
161 | "mimetype_inner": null, | 160 | "mimetype_inner": null, | ||
162 | "name": "LungCancer-TransformedKG", | 161 | "name": "LungCancer-TransformedKG", | ||
163 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | 162 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | ||
164 | "position": 1, | 163 | "position": 1, | ||
165 | "resource_type": null, | 164 | "resource_type": null, | ||
166 | "rights": "", | 165 | "rights": "", | ||
167 | "size": 83634, | 166 | "size": 83634, | ||
168 | "state": "active", | 167 | "state": "active", | ||
169 | "url": | 168 | "url": | ||
170 | cf3-a9d2-4900-8184-b2956b382ee9/download/lungcancer-transformedkg.nt", | 169 | cf3-a9d2-4900-8184-b2956b382ee9/download/lungcancer-transformedkg.nt", | ||
171 | "url_type": "upload" | 170 | "url_type": "upload" | ||
172 | }, | 171 | }, | ||
173 | { | 172 | { | ||
174 | "auto_update": "No", | 173 | "auto_update": "No", | ||
175 | "auto_update_last_update": "", | 174 | "auto_update_last_update": "", | ||
176 | "auto_update_url": "", | 175 | "auto_update_url": "", | ||
177 | "cache_last_updated": null, | 176 | "cache_last_updated": null, | ||
178 | "cache_url": null, | 177 | "cache_url": null, | ||
179 | "created": "2024-09-14T12:02:33.213210", | 178 | "created": "2024-09-14T12:02:33.213210", | ||
180 | "description": "Anonymized LungCancer-EnrichedKG", | 179 | "description": "Anonymized LungCancer-EnrichedKG", | ||
181 | "format": "", | 180 | "format": "", | ||
182 | "hash": "", | 181 | "hash": "", | ||
183 | "id": "c87d162d-eda3-4157-ab9b-0e019307182e", | 182 | "id": "c87d162d-eda3-4157-ab9b-0e019307182e", | ||
184 | "language": "", | 183 | "language": "", | ||
185 | "last_modified": "2024-09-14T12:02:33.196218", | 184 | "last_modified": "2024-09-14T12:02:33.196218", | ||
186 | "media": "", | 185 | "media": "", | ||
187 | "metadata_modified": "2024-09-16T09:56:57.950904", | 186 | "metadata_modified": "2024-09-16T09:56:57.950904", | ||
188 | "mimetype": null, | 187 | "mimetype": null, | ||
189 | "mimetype_inner": null, | 188 | "mimetype_inner": null, | ||
190 | "name": "LungCancer-EnrichedKG", | 189 | "name": "LungCancer-EnrichedKG", | ||
191 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | 190 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | ||
192 | "position": 2, | 191 | "position": 2, | ||
193 | "resource_type": null, | 192 | "resource_type": null, | ||
194 | "rights": "", | 193 | "rights": "", | ||
195 | "size": 83374, | 194 | "size": 83374, | ||
196 | "state": "active", | 195 | "state": "active", | ||
197 | "url": | 196 | "url": | ||
198 | 7d162d-eda3-4157-ab9b-0e019307182e/download/lungcancer-enrichedkg.nt", | 197 | 7d162d-eda3-4157-ab9b-0e019307182e/download/lungcancer-enrichedkg.nt", | ||
199 | "url_type": "upload" | 198 | "url_type": "upload" | ||
200 | }, | 199 | }, | ||
201 | { | 200 | { | ||
202 | "auto_update_last_update": "", | 201 | "auto_update_last_update": "", | ||
203 | "cache_last_updated": null, | 202 | "cache_last_updated": null, | ||
204 | "cache_url": null, | 203 | "cache_url": null, | ||
205 | "created": "2024-10-01T15:29:49.682253", | 204 | "created": "2024-10-01T15:29:49.682253", | ||
206 | "description": "", | 205 | "description": "", | ||
207 | "format": "ZIP", | 206 | "format": "ZIP", | ||
208 | "hash": "", | 207 | "hash": "", | ||
209 | "id": "6f9fc26c-d3ce-476a-a342-f8cfb7b02207", | 208 | "id": "6f9fc26c-d3ce-476a-a342-f8cfb7b02207", | ||
210 | "language": "", | 209 | "language": "", | ||
211 | "last_modified": "2024-10-01T15:29:49.648698", | 210 | "last_modified": "2024-10-01T15:29:49.648698", | ||
212 | "media": "", | 211 | "media": "", | ||
213 | "metadata_modified": "2024-10-01T15:29:49.666279", | 212 | "metadata_modified": "2024-10-01T15:29:49.666279", | ||
214 | "mimetype": "application/zip", | 213 | "mimetype": "application/zip", | ||
215 | "mimetype_inner": null, | 214 | "mimetype_inner": null, | ||
216 | "name": "LC Knowledge Graph 1 (LC-KG1)", | 215 | "name": "LC Knowledge Graph 1 (LC-KG1)", | ||
217 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | 216 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | ||
218 | "position": 3, | 217 | "position": 3, | ||
219 | "resource_type": null, | 218 | "resource_type": null, | ||
220 | "rights": "", | 219 | "rights": "", | ||
221 | "size": 10564, | 220 | "size": 10564, | ||
222 | "state": "active", | 221 | "state": "active", | ||
223 | "url": | 222 | "url": | ||
224 | 9a/resource/6f9fc26c-d3ce-476a-a342-f8cfb7b02207/download/lc-kg1.zip", | 223 | 9a/resource/6f9fc26c-d3ce-476a-a342-f8cfb7b02207/download/lc-kg1.zip", | ||
225 | "url_type": "upload" | 224 | "url_type": "upload" | ||
226 | }, | 225 | }, | ||
227 | { | 226 | { | ||
228 | "auto_update_last_update": "", | 227 | "auto_update_last_update": "", | ||
229 | "cache_last_updated": null, | 228 | "cache_last_updated": null, | ||
230 | "cache_url": null, | 229 | "cache_url": null, | ||
231 | "created": "2024-10-01T15:30:21.109256", | 230 | "created": "2024-10-01T15:30:21.109256", | ||
232 | "description": "", | 231 | "description": "", | ||
233 | "format": "ZIP", | 232 | "format": "ZIP", | ||
234 | "hash": "", | 233 | "hash": "", | ||
235 | "id": "ce9a29a8-8473-4adc-b86f-b684f93a4a0c", | 234 | "id": "ce9a29a8-8473-4adc-b86f-b684f93a4a0c", | ||
236 | "language": "", | 235 | "language": "", | ||
237 | "last_modified": "2024-10-01T15:30:21.079046", | 236 | "last_modified": "2024-10-01T15:30:21.079046", | ||
238 | "media": "", | 237 | "media": "", | ||
239 | "metadata_modified": "2024-10-01T15:30:21.098373", | 238 | "metadata_modified": "2024-10-01T15:30:21.098373", | ||
240 | "mimetype": "application/zip", | 239 | "mimetype": "application/zip", | ||
241 | "mimetype_inner": null, | 240 | "mimetype_inner": null, | ||
242 | "name": "LC Knowledge Graph 2 (LC-KG2)", | 241 | "name": "LC Knowledge Graph 2 (LC-KG2)", | ||
243 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | 242 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | ||
244 | "position": 4, | 243 | "position": 4, | ||
245 | "resource_type": null, | 244 | "resource_type": null, | ||
246 | "rights": "", | 245 | "rights": "", | ||
247 | "size": 53016, | 246 | "size": 53016, | ||
248 | "state": "active", | 247 | "state": "active", | ||
249 | "url": | 248 | "url": | ||
250 | 9a/resource/ce9a29a8-8473-4adc-b86f-b684f93a4a0c/download/lc-kg2.zip", | 249 | 9a/resource/ce9a29a8-8473-4adc-b86f-b684f93a4a0c/download/lc-kg2.zip", | ||
251 | "url_type": "upload" | 250 | "url_type": "upload" | ||
252 | }, | 251 | }, | ||
253 | { | 252 | { | ||
254 | "auto_update_last_update": "", | 253 | "auto_update_last_update": "", | ||
255 | "cache_last_updated": null, | 254 | "cache_last_updated": null, | ||
256 | "cache_url": null, | 255 | "cache_url": null, | ||
257 | "created": "2024-10-01T15:30:55.519206", | 256 | "created": "2024-10-01T15:30:55.519206", | ||
258 | "description": "", | 257 | "description": "", | ||
259 | "format": "ZIP", | 258 | "format": "ZIP", | ||
260 | "hash": "", | 259 | "hash": "", | ||
261 | "id": "fb07775d-7950-4704-a749-8de6267049ff", | 260 | "id": "fb07775d-7950-4704-a749-8de6267049ff", | ||
262 | "language": "", | 261 | "language": "", | ||
263 | "last_modified": "2024-10-01T15:30:55.475780", | 262 | "last_modified": "2024-10-01T15:30:55.475780", | ||
264 | "media": "", | 263 | "media": "", | ||
265 | "metadata_modified": "2024-10-01T15:30:55.501135", | 264 | "metadata_modified": "2024-10-01T15:30:55.501135", | ||
266 | "mimetype": "application/zip", | 265 | "mimetype": "application/zip", | ||
267 | "mimetype_inner": null, | 266 | "mimetype_inner": null, | ||
268 | "name": "LC Knowledge Graph 3 (LC-KG3)", | 267 | "name": "LC Knowledge Graph 3 (LC-KG3)", | ||
269 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | 268 | "package_id": "69043d59-72e2-4714-b914-dfced3f87b9a", | ||
270 | "position": 5, | 269 | "position": 5, | ||
271 | "resource_type": null, | 270 | "resource_type": null, | ||
272 | "rights": "", | 271 | "rights": "", | ||
273 | "size": 78917, | 272 | "size": 78917, | ||
274 | "state": "active", | 273 | "state": "active", | ||
275 | "url": | 274 | "url": | ||
276 | 9a/resource/fb07775d-7950-4704-a749-8de6267049ff/download/lc-kg3.zip", | 275 | 9a/resource/fb07775d-7950-4704-a749-8de6267049ff/download/lc-kg3.zip", | ||
277 | "url_type": "upload" | 276 | "url_type": "upload" | ||
278 | } | 277 | } | ||
279 | ], | 278 | ], | ||
280 | "services_used_list": "", | 279 | "services_used_list": "", | ||
281 | "spatial": "", | 280 | "spatial": "", | ||
282 | "spatial_resolution": "", | 281 | "spatial_resolution": "", | ||
283 | "start_date": "", | 282 | "start_date": "", | ||
284 | "state": "active", | 283 | "state": "active", | ||
285 | "tags": [ | 284 | "tags": [ | ||
286 | { | 285 | { | ||
287 | "display_name": "Health-care", | 286 | "display_name": "Health-care", | ||
288 | "id": "9483f09b-a7a4-4ad6-a737-882fe99975d4", | 287 | "id": "9483f09b-a7a4-4ad6-a737-882fe99975d4", | ||
289 | "name": "Health-care", | 288 | "name": "Health-care", | ||
290 | "state": "active", | 289 | "state": "active", | ||
291 | "vocabulary_id": null | 290 | "vocabulary_id": null | ||
292 | }, | 291 | }, | ||
293 | { | 292 | { | ||
294 | "display_name": "Knowledge Graph", | 293 | "display_name": "Knowledge Graph", | ||
295 | "id": "12b0c897-01cf-4275-99e8-21d85c09a38d", | 294 | "id": "12b0c897-01cf-4275-99e8-21d85c09a38d", | ||
296 | "name": "Knowledge Graph", | 295 | "name": "Knowledge Graph", | ||
297 | "state": "active", | 296 | "state": "active", | ||
298 | "vocabulary_id": null | 297 | "vocabulary_id": null | ||
299 | }, | 298 | }, | ||
300 | { | 299 | { | ||
301 | "display_name": "Symbolic Learning", | 300 | "display_name": "Symbolic Learning", | ||
302 | "id": "42bfaed0-47e1-4b46-9f1d-95002032bff9", | 301 | "id": "42bfaed0-47e1-4b46-9f1d-95002032bff9", | ||
303 | "name": "Symbolic Learning", | 302 | "name": "Symbolic Learning", | ||
304 | "state": "active", | 303 | "state": "active", | ||
305 | "vocabulary_id": null | 304 | "vocabulary_id": null | ||
306 | } | 305 | } | ||
307 | ], | 306 | ], | ||
308 | "temporal_resolution": "", | 307 | "temporal_resolution": "", | ||
309 | "title": "VISE-KG", | 308 | "title": "VISE-KG", | ||
310 | "type": "dataset", | 309 | "type": "dataset", | ||
311 | "url": "https://github.com/SDM-TIB/VISE", | 310 | "url": "https://github.com/SDM-TIB/VISE", | ||
312 | "version": "", | 311 | "version": "", | ||
313 | "version_note": "" | 312 | "version_note": "" | ||
314 | } | 313 | } |