Changes
On September 16, 2024 at 11:11:56 AM UTC, admin:
-
Changed value of field
doi_date_published
to2024-09-16
in Hybrid AI Approach for Counterfactual Prediction over Knowledge Graphs for Personal Healthcare -
Changed value of field
doi_status
toTrue
in Hybrid AI Approach for Counterfactual Prediction over Knowledge Graphs for Personal Healthcare
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "accrualPeriodicity": "", | 3 | "accrualPeriodicity": "", | ||
4 | "author": "Hao Huang", | 4 | "author": "Hao Huang", | ||
5 | "author_email": "hao.haung@tib.eu", | 5 | "author_email": "hao.haung@tib.eu", | ||
6 | "citation": [], | 6 | "citation": [], | ||
7 | "conformsTo": "", | 7 | "conformsTo": "", | ||
8 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 8 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
9 | "defined_in": "https://doi.org/10.13140/RG.2.2.15682.18889", | 9 | "defined_in": "https://doi.org/10.13140/RG.2.2.15682.18889", | ||
10 | "doi": "10.57702/9nmma21w", | 10 | "doi": "10.57702/9nmma21w", | ||
n | 11 | "doi_date_published": null, | n | 11 | "doi_date_published": "2024-09-16", |
12 | "doi_publisher": "TIB", | 12 | "doi_publisher": "TIB", | ||
n | 13 | "doi_status": false, | n | 13 | "doi_status": true, |
14 | "domain": "https://ldm.kisski.de", | 14 | "domain": "https://ldm.kisski.de", | ||
15 | "end_date": "", | 15 | "end_date": "", | ||
16 | "extra_authors": [ | 16 | "extra_authors": [ | ||
17 | { | 17 | { | ||
18 | "extra_author": "Emetis Niazmand", | 18 | "extra_author": "Emetis Niazmand", | ||
19 | "orcid": "0000-0001-8194-8079" | 19 | "orcid": "0000-0001-8194-8079" | ||
20 | }, | 20 | }, | ||
21 | { | 21 | { | ||
22 | "extra_author": "Maria-Esther Vidal", | 22 | "extra_author": "Maria-Esther Vidal", | ||
23 | "orcid": "0000-0003-1160-8727" | 23 | "orcid": "0000-0003-1160-8727" | ||
24 | } | 24 | } | ||
25 | ], | 25 | ], | ||
26 | "extras": [ | 26 | "extras": [ | ||
27 | { | 27 | { | ||
28 | "__extras": { | 28 | "__extras": { | ||
29 | "id": "bd040051-3fb7-4ac7-b93a-fcfee544b0df", | 29 | "id": "bd040051-3fb7-4ac7-b93a-fcfee544b0df", | ||
30 | "package_id": "6f83604a-9543-4a9c-b49b-450be6a2577c", | 30 | "package_id": "6f83604a-9543-4a9c-b49b-450be6a2577c", | ||
31 | "state": "active" | 31 | "state": "active" | ||
32 | }, | 32 | }, | ||
33 | "key": "", | 33 | "key": "", | ||
34 | "value": "" | 34 | "value": "" | ||
35 | } | 35 | } | ||
36 | ], | 36 | ], | ||
37 | "groups": [], | 37 | "groups": [], | ||
38 | "id": "6f83604a-9543-4a9c-b49b-450be6a2577c", | 38 | "id": "6f83604a-9543-4a9c-b49b-450be6a2577c", | ||
39 | "isopen": true, | 39 | "isopen": true, | ||
40 | "landing_page": "", | 40 | "landing_page": "", | ||
41 | "language": "English", | 41 | "language": "English", | ||
42 | "license_id": "cc-by", | 42 | "license_id": "cc-by", | ||
43 | "license_title": "Creative Commons Attribution", | 43 | "license_title": "Creative Commons Attribution", | ||
44 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | 44 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | ||
45 | "link_orkg": "http://orkg.org/orkg/resource/R735326", | 45 | "link_orkg": "http://orkg.org/orkg/resource/R735326", | ||
46 | "maintainer": "Hao Huang", | 46 | "maintainer": "Hao Huang", | ||
47 | "maintainer_email": "hao.haung@tib.eu", | 47 | "maintainer_email": "hao.haung@tib.eu", | ||
48 | "metadata_created": "2024-09-16T11:10:13.665218", | 48 | "metadata_created": "2024-09-16T11:10:13.665218", | ||
n | 49 | "metadata_modified": "2024-09-16T11:11:44.959159", | n | 49 | "metadata_modified": "2024-09-16T11:11:45.769472", |
50 | "name": | 50 | "name": | ||
51 | nterfactual-prediction-over-knowledge-graphs-for-personal-healthcare", | 51 | nterfactual-prediction-over-knowledge-graphs-for-personal-healthcare", | ||
52 | "notes": "https://youtu.be/vkF3fpCZLhk Artificial intelligence (AI) | 52 | "notes": "https://youtu.be/vkF3fpCZLhk Artificial intelligence (AI) | ||
53 | has become an invaluable tool in health-care for disease prediction | 53 | has become an invaluable tool in health-care for disease prediction | ||
54 | and diagnosis. Despite their predictive accuracy, AI models may ignore | 54 | and diagnosis. Despite their predictive accuracy, AI models may ignore | ||
55 | causal relationships between patient characteristics (demographic or | 55 | causal relationships between patient characteristics (demographic or | ||
56 | clinical). As a result, although AI models capture associative | 56 | clinical). As a result, although AI models capture associative | ||
57 | patterns, ignoring the causal relationships of predicted | 57 | patterns, ignoring the causal relationships of predicted | ||
58 | characteristics limits their ability to perform counterfactual | 58 | characteristics limits their ability to perform counterfactual | ||
59 | reasoning about the predicted characteristics of a patient when | 59 | reasoning about the predicted characteristics of a patient when | ||
60 | dependent characteristics change. This limitation of AI models can | 60 | dependent characteristics change. This limitation of AI models can | ||
61 | affect the understanding of predicted outcomes. We have proposed | 61 | affect the understanding of predicted outcomes. We have proposed | ||
62 | hybrid AI methods that combine symbolic reasoning over knowledge | 62 | hybrid AI methods that combine symbolic reasoning over knowledge | ||
63 | graphs (KGs), large language models (LLMs), and causal reasoning | 63 | graphs (KGs), large language models (LLMs), and causal reasoning | ||
64 | techniques to infer causal relationships between patients' properties. | 64 | techniques to infer causal relationships between patients' properties. | ||
65 | As a result, a causal model is learned, enabling counterfactual | 65 | As a result, a causal model is learned, enabling counterfactual | ||
66 | prediction to support clinical decisions. We apply these AI methods to | 66 | prediction to support clinical decisions. We apply these AI methods to | ||
67 | predict the counterfactuals of biomarker results in non-small cell | 67 | predict the counterfactuals of biomarker results in non-small cell | ||
68 | lung cancer (NSCLC) patients under hypothetical treatments with | 68 | lung cancer (NSCLC) patients under hypothetical treatments with | ||
69 | different smoking habits. We have created synthetic datasets based on | 69 | different smoking habits. We have created synthetic datasets based on | ||
70 | clinical records of NSCLC patients to evaluate the performance of the | 70 | clinical records of NSCLC patients to evaluate the performance of the | ||
71 | proposed methods. The observed results suggest that our methods are | 71 | proposed methods. The observed results suggest that our methods are | ||
72 | competitive with baseline methods in causal relationship discovery and | 72 | competitive with baseline methods in causal relationship discovery and | ||
73 | counterfactual prediction. CCS CONCEPTS \u2022 Applied computing | 73 | counterfactual prediction. CCS CONCEPTS \u2022 Applied computing | ||
74 | \u2192 Health care information systems; \u2022 Computing methodologies | 74 | \u2192 Health care information systems; \u2022 Computing methodologies | ||
75 | \u2192 Artificial intelligence.", | 75 | \u2192 Artificial intelligence.", | ||
76 | "num_resources": 1, | 76 | "num_resources": 1, | ||
77 | "num_tags": 3, | 77 | "num_tags": 3, | ||
78 | "orcid": "0000-0003-3117-0881", | 78 | "orcid": "0000-0003-3117-0881", | ||
79 | "organization": { | 79 | "organization": { | ||
80 | "approval_status": "approved", | 80 | "approval_status": "approved", | ||
81 | "created": "2017-11-23T17:30:37.757128", | 81 | "created": "2017-11-23T17:30:37.757128", | ||
82 | "description": "The German National Library of Science and | 82 | "description": "The German National Library of Science and | ||
83 | Technology, abbreviated TIB, is the national library of the Federal | 83 | Technology, abbreviated TIB, is the national library of the Federal | ||
84 | Republic of Germany for all fields of engineering, technology, and the | 84 | Republic of Germany for all fields of engineering, technology, and the | ||
85 | natural sciences.", | 85 | natural sciences.", | ||
86 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 86 | "id": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
87 | "image_url": | 87 | "image_url": | ||
88 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | 88 | 3conf/ext/tib_tmpl_bootstrap/Resources/Public/images/TIB_Logo_en.png", | ||
89 | "is_organization": true, | 89 | "is_organization": true, | ||
90 | "name": "tib", | 90 | "name": "tib", | ||
91 | "state": "active", | 91 | "state": "active", | ||
92 | "title": "TIB", | 92 | "title": "TIB", | ||
93 | "type": "organization" | 93 | "type": "organization" | ||
94 | }, | 94 | }, | ||
95 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | 95 | "owner_org": "0c5362f5-b99e-41db-8256-3d0d7549bf4d", | ||
96 | "page": "", | 96 | "page": "", | ||
97 | "private": false, | 97 | "private": false, | ||
98 | "relationships_as_object": [], | 98 | "relationships_as_object": [], | ||
99 | "relationships_as_subject": [], | 99 | "relationships_as_subject": [], | ||
100 | "resources": [ | 100 | "resources": [ | ||
101 | { | 101 | { | ||
102 | "auto_update_last_update": "", | 102 | "auto_update_last_update": "", | ||
103 | "cache_last_updated": null, | 103 | "cache_last_updated": null, | ||
104 | "cache_url": null, | 104 | "cache_url": null, | ||
105 | "created": "2024-09-16T11:11:44.970346", | 105 | "created": "2024-09-16T11:11:44.970346", | ||
106 | "description": "", | 106 | "description": "", | ||
107 | "format": "ZIP", | 107 | "format": "ZIP", | ||
108 | "hash": "", | 108 | "hash": "", | ||
109 | "id": "2b9aff9c-16b4-4591-9ab9-577f3d27ff50", | 109 | "id": "2b9aff9c-16b4-4591-9ab9-577f3d27ff50", | ||
110 | "language": "", | 110 | "language": "", | ||
111 | "last_modified": "2024-09-16T11:11:44.947735", | 111 | "last_modified": "2024-09-16T11:11:44.947735", | ||
112 | "media": "", | 112 | "media": "", | ||
113 | "metadata_modified": "2024-09-16T11:11:44.962458", | 113 | "metadata_modified": "2024-09-16T11:11:44.962458", | ||
114 | "mimetype": "application/zip", | 114 | "mimetype": "application/zip", | ||
115 | "mimetype_inner": null, | 115 | "mimetype_inner": null, | ||
116 | "name": "Workshop Data Sources", | 116 | "name": "Workshop Data Sources", | ||
117 | "package_id": "6f83604a-9543-4a9c-b49b-450be6a2577c", | 117 | "package_id": "6f83604a-9543-4a9c-b49b-450be6a2577c", | ||
118 | "position": 0, | 118 | "position": 0, | ||
119 | "resource_type": null, | 119 | "resource_type": null, | ||
120 | "rights": "", | 120 | "rights": "", | ||
121 | "size": 789346, | 121 | "size": 789346, | ||
122 | "state": "active", | 122 | "state": "active", | ||
123 | "url": | 123 | "url": | ||
124 | e/2b9aff9c-16b4-4591-9ab9-577f3d27ff50/download/kdd-healthcareai.zip", | 124 | e/2b9aff9c-16b4-4591-9ab9-577f3d27ff50/download/kdd-healthcareai.zip", | ||
125 | "url_type": "upload" | 125 | "url_type": "upload" | ||
126 | } | 126 | } | ||
127 | ], | 127 | ], | ||
128 | "services_used_list": "", | 128 | "services_used_list": "", | ||
129 | "spatial": "", | 129 | "spatial": "", | ||
130 | "spatial_resolution": "", | 130 | "spatial_resolution": "", | ||
131 | "start_date": "", | 131 | "start_date": "", | ||
t | 132 | "state": "draft", | t | 132 | "state": "active", |
133 | "tags": [ | 133 | "tags": [ | ||
134 | { | 134 | { | ||
135 | "display_name": "Artificial intelligence", | 135 | "display_name": "Artificial intelligence", | ||
136 | "id": "19c5fcb5-fa24-442c-a559-a9fff2d58735", | 136 | "id": "19c5fcb5-fa24-442c-a559-a9fff2d58735", | ||
137 | "name": "Artificial intelligence", | 137 | "name": "Artificial intelligence", | ||
138 | "state": "active", | 138 | "state": "active", | ||
139 | "vocabulary_id": null | 139 | "vocabulary_id": null | ||
140 | }, | 140 | }, | ||
141 | { | 141 | { | ||
142 | "display_name": "Knowledge Graph", | 142 | "display_name": "Knowledge Graph", | ||
143 | "id": "12b0c897-01cf-4275-99e8-21d85c09a38d", | 143 | "id": "12b0c897-01cf-4275-99e8-21d85c09a38d", | ||
144 | "name": "Knowledge Graph", | 144 | "name": "Knowledge Graph", | ||
145 | "state": "active", | 145 | "state": "active", | ||
146 | "vocabulary_id": null | 146 | "vocabulary_id": null | ||
147 | }, | 147 | }, | ||
148 | { | 148 | { | ||
149 | "display_name": "healthcare", | 149 | "display_name": "healthcare", | ||
150 | "id": "e187bf66-1085-49ef-a3dc-34dc68276244", | 150 | "id": "e187bf66-1085-49ef-a3dc-34dc68276244", | ||
151 | "name": "healthcare", | 151 | "name": "healthcare", | ||
152 | "state": "active", | 152 | "state": "active", | ||
153 | "vocabulary_id": null | 153 | "vocabulary_id": null | ||
154 | } | 154 | } | ||
155 | ], | 155 | ], | ||
156 | "temporal_resolution": "", | 156 | "temporal_resolution": "", | ||
157 | "title": "Hybrid AI Approach for Counterfactual Prediction over | 157 | "title": "Hybrid AI Approach for Counterfactual Prediction over | ||
158 | Knowledge Graphs for Personal Healthcare", | 158 | Knowledge Graphs for Personal Healthcare", | ||
159 | "type": "dataset", | 159 | "type": "dataset", | ||
160 | "url": | 160 | "url": | ||
161 | nterfactual_Prediction_over_Knowledge_Graphs_for_Personal_Healthcare", | 161 | nterfactual_Prediction_over_Knowledge_Graphs_for_Personal_Healthcare", | ||
162 | "version": "", | 162 | "version": "", | ||
163 | "version_note": "" | 163 | "version_note": "" | ||
164 | } | 164 | } |